PRINCIPLES OF ANALYSIS
LECTURE 13 - OPEN AND CLOSED SETS

PAUL L. BAILEY

1. NEIGHBORHOODS

Let g € R. An e-neighborhood of xy is an open interval of the form (zo —
€,z + €), where € > 0.

More generally, a neighborhood of xq is a subset @@ C R such that there exists
e > 0 with (zg —€,20 + €) C Q.

A subset U C R is called open if

VYueUIe>03 |z —ul<e=zel.

Or, in other words, U is open if every point in U is surrounded by an e-
neighborhood which is completely contained in U.

Proposition 1. Let T denote the collection of all open subsets of R. Then
(a) €T andReT;
(b) if O CT, then UO € T;
(c) if O C T is finite, then NO € T.

Proof.

(a) The condition for openness is vacuously satisfied by the empty set. For
R, consider x € R. Then (z — 1,2+ 1) C R. Thus R is open.

(b) Let O C T; that is, O is a collection of open sets. Select x € UO.
Then z € U for some U € O. Since U is open, there exists € > 0 such that
(x —e,x+€) CU. Since U C UO, it follows that (x — €,z +¢€) C UO. Thus UO
is open.

(c) Let O C T be a finite collection of open sets. Since O is finite, we may
write O = {Uy,Us,...,U,}, where U; is an open set for i = 1,...,n. If NO is
empty, we are done, so assume that it it nonempty, and select x € NO. For each
i, there exists €; such that (z —e;,z +¢;) C U;. Set € = min{ey,...,e,}. Then
(r —e,x +¢€) C NO. Thus NO is open. O
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Lemma 1. Let O be a collection of open intervals. If NO is nonempty, then UO
is an open interval.

Proof. By hypothesis, there exists x € NO. Write O as a family of sets:
0={0, | ac A},

where A is an indexing set. Now O, is an open interval; we label its endpoints
by letting O, = (aa, ba), Where aq, b, € R. Set

a=inf{a, |a € A} and b=sup{b,|ac A}

Claim: UO = (a,b). We prove both directions of containment.

(C) Let y € UO. Then y € O, for some a. Thus a < a, < y < by < b, 80
y € (a,b).

(D) Let y € (a,b). Assume that y < z; the proof for y > x is analogous.
Now a < y, and since a = inf{a, | @ € A}, so there exists & € A such that
a < ag <y. Also z € Oy 50 aq < Yy < & < by; thus y € (an,bs) = O, and
y € U0. O

Proposition 2. Let U C R. Then U is open if and only if there exists a
countable collection O of disjoint open intervals such that U = UQ.

Proof. Put a relation on U by defining u; ~ us if there exists an open interval
O such that ui,us € O and O C U.

Claim 1: This is an equivalence relation. We wish to show that ~ is reflexive,
symmetric, and transitive.

Reflexive Let w € U. Since U is open, there exists € > 0 such that (v —e,u +
€) CU. Let O =(u—¢€,u+e¢€); then u € O and O C U, so u ~ u.

Symmetric Let uy,us € U, and assume u; ~ us. Then there exists an open
interval O such that uy,us € O and O C U. But then us,u; € O, so us ~ uy.

Transitive Let uy,us,us € U, and assume that u; ~ us and us ~ uz. Then
there exist open intervals O1, Oy C U such that ui,us € O1 and ug,us € Os.
Now uy € O1 N Os, so by the Lemma, O, U Os is an interval contained in U and
containing u; and us. Thus uy ~ us.

Claim 2: The equivalence classes of this equivalence relation are open in-
tervals. Let w € U and let @ denote the equivalence class of u. For every
v € U there exists and open interval O, such that u,v € O, and O, C U. Let
O ={0, | v € w}. Then u € NO, so UO is an open interval; it suffices to show
that w = UO. Clearly w C UQ. Moreover, if x € UQ, then x € O, for some v, so
x ~u and x € w. Thus ©w = UO.

Claim 3: Distinct equivalence classes have empty intersection. This is true
for every equivalence relation.

Claim 4: There are only countably many equivalence classes. Let O = {O,, |
a € A} be the collection of equivalence classes, where A is some indexing set.
Let Oy = (@q,bs). We have seen that there exists g, € Q such that such that
oy < ga < by. Let Q = {go | @ € A}. Then |0] = |4]| = |Q] < |Q|; since Q is
countable, so is O. O



2. CLOSED SETS
A subset F' C R is closed if its complement R ~\ F' is open.

Proposition 3. Let F denote the collection of all closed subsets of R.
(a) €F and R e F;
(b) if € C &, then NC € F;
(c) if € C F is finite, then UC € T.

Proof. Apply DeMorgan’s Laws to Proposition 1. O

Proposition 4. Let FF C R. Then F is closed if and only if every sequence in
F' which converges in R has a limit in F.

Proof. We prove both directions.

(=) Suppose that F' is closed, and let {a,}52; be a sequence in F which
converges to a € R. We wish to show that a € F. Suppose not; then a € R~ F.
This set is open, so there exists € > 0 such that (¢ — ¢,a+¢) C R~ F. Thus
there exists N € ZT such that a,, € R~ F for all n > N. This contradicts that
the sequence is in F.

(<) Suppose that F' is not closed; we wish to construct a sequence in F' which
converges to a point not in F. Since F' is not closed, then R ~\ F is not open.
This means that there exists a point x € R ~\ F' such that for every € > 0,
(x — €,x + €) is not a subset of R \ F; that is, (x — €, & + €) contains a point in
F.ForneZ%, let z, € (x — 2,24+ L)N F. Then {z,}52, is a sequence in F,
but limy, 0o 2, =2 ¢ F. O



3. ACCUMULATION POINTS

A deleted neighborhood of xg is a set of the form @ ~ {z¢}, where @ is a
neighborhood of .

Let S € R. An accumulation point of S is a point s € R such that every
deleted neighborhood of s contains an element of S.

We note that an accumulation point of a set S may or may not be an element
of S.

Proposition 5. Let FF C R. Then F is closed if and only if F' contains all of
its accumulation points.

Proof. Prove both directions.

(=) Suppose F is closed, and let € R. Suppose = ¢ F; we show that z is
not an accumulation point of F. Since z € F, then = € R ~\ F, which is open.
Therefore there exists € > 0 such that U = (x —¢,z+¢€) C RN F. Then U \ {z}
is a deleted neighborhood of = whose intersection with F' is empty, and x is not
an accumulation point of F.

(<) Suppose F' contains all of its accumulation points. We show that the
complement of F' is open. Let x € R\ F. Then « is not an accumulation point
of F. Then there exists a deleted neighborhood U of x such that U C R\ F. This
neighborhood contains a deleted epsilon neighborhood, say (x — €,z +€) ~ {z}.
This set is in the complement of F', and since © ¢ F, we have (x—¢, x+¢) C RN F.
Thus R \ F' is open, so F' is closed. O

Theorem 1 (Bolzano-Weierstrauss Theorem). Fvery bounded infinite set of real
numbers has an accumulation point.

Proof. Let S be a bounded infinite set. Since S is infinite, there exists an injective
function s : Z* — S; view this as a sequence {s,}>° ;. This sequence has a
monotonic subsequence, say {sy, }, which is also bounded and hence convergent,
say to s € R. Suppose that s = s,, for some K; then, since s is the limit and
the sequence is monotonic, it is easy to see that s,, = s for every k > K. This
contradicts that the sequence was injective. Thus s # s, for every k € Z*.
Now for every € > 0, there exists K € Z* such that |s,, — s| < ¢ that is,
Snyx € (s —€,5+¢€), and s,, # s. Thus s is an accumulation point for S. O
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