
PRINCIPLES OF ANALYSIS
LECTURE 13 - OPEN AND CLOSED SETS

PAUL L. BAILEY

1. Neighborhoods

Let x0 ∈ R. An ε-neighborhood of x0 is an open interval of the form (x0 −
ε, x0 + ε), where ε > 0.

More generally, a neighborhood of x0 is a subset Q ⊂ R such that there exists
ε > 0 with (x0 − ε, x0 + ε) ⊂ Q.

A subset U ⊂ R is called open if

∀u ∈ U∃ε > 0 3 |x− u| < ε ⇒ x ∈ U.

Or, in other words, U is open if every point in U is surrounded by an ε-
neighborhood which is completely contained in U .

Proposition 1. Let T denote the collection of all open subsets of R. Then
(a) ∅ ∈ T and R ∈ T;
(b) if O ⊂ T, then ∪O ∈ T;
(c) if O ⊂ T is finite, then ∩O ∈ T.

Proof.
(a) The condition for openness is vacuously satisfied by the empty set. For

R, consider x ∈ R. Then (x− 1, x + 1) ⊂ R. Thus R is open.
(b) Let O ⊂ T; that is, O is a collection of open sets. Select x ∈ ∪O.

Then x ∈ U for some U ∈ O. Since U is open, there exists ε > 0 such that
(x− ε, x + ε) ⊂ U . Since U ⊂ ∪O, it follows that (x− ε, x + ε) ⊂ ∪O. Thus ∪O

is open.
(c) Let O ⊂ T be a finite collection of open sets. Since O is finite, we may

write O = {U1, U2, . . . , Un}, where Ui is an open set for i = 1, . . . , n. If ∩O is
empty, we are done, so assume that it it nonempty, and select x ∈ ∩O. For each
i, there exists εi such that (x − εi, x + εi) ⊂ Ui. Set ε = min{ε1, . . . , εn}. Then
(x− ε, x + ε) ⊂ ∩O. Thus ∩O is open. �
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Lemma 1. Let O be a collection of open intervals. If ∩O is nonempty, then ∪O

is an open interval.

Proof. By hypothesis, there exists x ∈ ∩O. Write O as a family of sets:

O = {Oα | α ∈ A},
where A is an indexing set. Now Oα is an open interval; we label its endpoints
by letting Oα = (aα, bα), where aα, bα ∈ R. Set

a = inf{aα | α ∈ A} and b = sup{bα | α ∈ A}.
Claim: ∪O = (a, b). We prove both directions of containment.
(⊂) Let y ∈ ∪O. Then y ∈ Oα for some α. Thus a ≤ aα < y < bα ≤ b, so

y ∈ (a, b).
(⊃) Let y ∈ (a, b). Assume that y ≤ x; the proof for y ≥ x is analogous.

Now a < y, and since a = inf{aα | α ∈ A}, so there exists α ∈ A such that
a ≤ aα < y. Also x ∈ Oα so aα < y ≤ x < bα; thus y ∈ (aα, bα) = Oα, and
y ∈ ∪O. �

Proposition 2. Let U ⊂ R. Then U is open if and only if there exists a
countable collection O of disjoint open intervals such that U = ∪O.

Proof. Put a relation on U by defining u1 ∼ u2 if there exists an open interval
O such that u1, u2 ∈ O and O ⊂ U .

Claim 1: This is an equivalence relation. We wish to show that ∼ is reflexive,
symmetric, and transitive.

Reflexive Let u ∈ U . Since U is open, there exists ε > 0 such that (u− ε, u +
ε) ⊂ U . Let O = (u− ε, u + ε); then u ∈ O and O ⊂ U , so u ∼ u.

Symmetric Let u1, u2 ∈ U , and assume u1 ∼ u2. Then there exists an open
interval O such that u1, u2 ∈ O and O ⊂ U . But then u2, u1 ∈ O, so u2 ∼ u1.

Transitive Let u1, u2, u3 ∈ U , and assume that u1 ∼ u2 and u2 ∼ u3. Then
there exist open intervals O1, O2 ⊂ U such that u1, u2 ∈ O1 and u2, u2 ∈ O2.
Now u2 ∈ O1 ∩O2, so by the Lemma, O1 ∪O2 is an interval contained in U and
containing u1 and u3. Thus u1 ∼ u3.

Claim 2: The equivalence classes of this equivalence relation are open in-
tervals. Let u ∈ U and let u denote the equivalence class of u. For every
v ∈ U there exists and open interval Ov such that u, v ∈ Ov and Ov ⊂ U . Let
O = {Ov | v ∈ u}. Then u ∈ ∩O, so ∪O is an open interval; it suffices to show
that u = ∪O. Clearly u ⊂ ∪O. Moreover, if x ∈ ∪O, then x ∈ Ov for some v, so
x ∼ u and x ∈ u. Thus u = ∪O.

Claim 3: Distinct equivalence classes have empty intersection. This is true
for every equivalence relation.

Claim 4: There are only countably many equivalence classes. Let O = {Oα |
α ∈ A} be the collection of equivalence classes, where A is some indexing set.
Let Oα = (aα, bα). We have seen that there exists qα ∈ Q such that such that
aα < qα < bα. Let Q = {qα | α ∈ A}. Then |O| = |A| = |Q| ≤ |Q|; since Q is
countable, so is O. �
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2. Closed Sets

A subset F ⊂ R is closed if its complement R r F is open.

Proposition 3. Let F denote the collection of all closed subsets of R.
(a) ∅ ∈ F and R ∈ F;
(b) if C ⊂ F, then ∩C ∈ F;
(c) if C ⊂ F is finite, then ∪C ∈ T.

Proof. Apply DeMorgan’s Laws to Proposition 1. �

Proposition 4. Let F ⊂ R. Then F is closed if and only if every sequence in
F which converges in R has a limit in F .

Proof. We prove both directions.
(⇒) Suppose that F is closed, and let {an}∞n=1 be a sequence in F which

converges to a ∈ R. We wish to show that a ∈ F . Suppose not; then a ∈ R r F .
This set is open, so there exists ε > 0 such that (a − ε, a + ε) ⊂ R r F . Thus
there exists N ∈ Z+ such that an ∈ R r F for all n ≥ N . This contradicts that
the sequence is in F .

(⇐) Suppose that F is not closed; we wish to construct a sequence in F which
converges to a point not in F . Since F is not closed, then R r F is not open.
This means that there exists a point x ∈ R r F such that for every ε > 0,
(x− ε, x + ε) is not a subset of R r F ; that is, (x− ε, x + ε) contains a point in
F . For n ∈ Z+, let xn ∈ (x− 1

n , x + 1
n ) ∩ F . Then {xn}∞n=1 is a sequence in F ,

but limn→∞ xn = x /∈ F . �
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3. Accumulation Points

A deleted neighborhood of x0 is a set of the form Q r {x0}, where Q is a
neighborhood of x0.

Let S ⊂ R. An accumulation point of S is a point s ∈ R such that every
deleted neighborhood of s contains an element of S.

We note that an accumulation point of a set S may or may not be an element
of S.

Proposition 5. Let F ⊂ R. Then F is closed if and only if F contains all of
its accumulation points.

Proof. Prove both directions.
(⇒) Suppose F is closed, and let x ∈ R. Suppose x /∈ F ; we show that x is

not an accumulation point of F . Since x ∈ F , then x ∈ R r F , which is open.
Therefore there exists ε > 0 such that U = (x− ε, x+ ε) ⊂ R rF . Then U r {x}
is a deleted neighborhood of x whose intersection with F is empty, and x is not
an accumulation point of F .

(⇐) Suppose F contains all of its accumulation points. We show that the
complement of F is open. Let x ∈ R r F . Then x is not an accumulation point
of F . Then there exists a deleted neighborhood U of x such that U ⊂ RrF . This
neighborhood contains a deleted epsilon neighborhood, say (x− ε, x + ε) r {x}.
This set is in the complement of F , and since x /∈ F , we have (x−ε, x+ε) ⊂ RrF .
Thus R r F is open, so F is closed. �

Theorem 1 (Bolzano-Weierstrauss Theorem). Every bounded infinite set of real
numbers has an accumulation point.

Proof. Let S be a bounded infinite set. Since S is infinite, there exists an injective
function s : Z+ → S; view this as a sequence {sn}∞n=1. This sequence has a
monotonic subsequence, say {snk

}, which is also bounded and hence convergent,
say to s ∈ R. Suppose that s = snK

for some K; then, since s is the limit and
the sequence is monotonic, it is easy to see that snk

= s for every k ≥ K. This
contradicts that the sequence was injective. Thus s 6= snk

for every k ∈ Z+.
Now for every ε > 0, there exists K ∈ Z+ such that |snK

− s| < ε; that is,
snK

∈ (s− ε, s + ε), and snK
6= s. Thus s is an accumulation point for S. �
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